Myosin IIA deficient cells migrate efficiently despite reduced traction forces at cell periphery

نویسندگان

  • Melissa H. Jorrisch
  • Wenting Shih
  • Soichiro Yamada
چکیده

Cell motility is a cornerstone of embryogenesis, tissue remodeling and repair, and cancer cell invasion. It is generally thought that migrating cells grab and exert traction force onto the extracellular matrix in order to pull the cell body forward. While previous studies have shown that myosin II deficient cells migrate efficiently, whether these cells exert traction forces during cell migration in the absence of the major contractile machinery is currently unknown. Using an array of micron-sized pillars as a force sensor and shRNA specific to each myosin II isoform (A and B), we analyzed how myosin IIA and IIB individually regulate cell migration and traction force generation. Myosin IIA and IIB localized preferentially to the leading edge where traction force was greatest, and the trailing edge, respectively. When individual myosin II isoforms were depleted by shRNA, myosin IIA deficient cells lost actin stress fibers and focal adhesions, whereas myosin IIB deficient cells maintained similar actin organization and focal adhesions as wild-type cells. Interestingly, myosin IIA deficient cells migrated faster than wild-type or myosin IIB deficient cells on both a rigid surface and a pillar array, yet myosin IIA deficient cells exerted significantly less traction force at the leading edge than wild-type or myosin IIB deficient cells. These results suggest that, in the absence of myosin IIA mediated force-generating machinery, cells move with minimal traction forces at the cell periphery, thus demonstrating the remarkable ability of cells to adapt and migrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow.

Nonmuscle myosin IIA (NMM-IIA) is involved in the formation of focal adhesions and neurite retraction. However, the role of NMM-IIA in these functions remains largely unknown. Using RNA interference as a tool to decrease NMM-IIA expression, we have found that NMM-IIA is the major myosin involved in traction force generation and retrograde F-actin flow in mouse embryonic fibroblast cells. Quanti...

متن کامل

Probing cell traction forces in confined microenvironments.

Cells migrate in vivo within three-dimensional (3D) extracellular matrices. Cells also migrate through 3D longitudinal channels formed between the connective tissue and the basement membrane of muscle, nerve, and epithelium. Although traction forces have been measured during 2D cell migration, no assay has been developed to probe forces during migration through confined microenvironments. We th...

متن کامل

New and Notable Separate but Not Equal: Differential Mechanical Roles for Myosin Isoforms

Cells undergo many structural-mechanical changes as an inextricable component of cellular motility, cytokinesis, and changes in cell shape. The mere act of receptor-mediated adhesion to extracellular matrix involves massive changes in cytoskeletal organization, spreading, and flattening of cells against the matrix, and the generation of traction forces through the contractile activity of cells....

متن کامل

Separate but not equal: differential mechanical roles for Myosin isoforms.

Cells undergo many structural-mechanical changes as an inextricable component of cellular motility, cytokinesis, and changes in cell shape. The mere act of receptor-mediated adhesion to extracellular matrix involves massive changes in cytoskeletal organization, spreading, and flattening of cells against the matrix, and the generation of traction forces through the contractile activity of cells....

متن کامل

Thrombin-induced contraction in alveolar epithelial cells probed by traction microscopy.

Contractile tension of alveolar epithelial cells plays a major role in the force balance that regulates the structural integrity of the alveolar barrier. The aim of this work was to study thrombin-induced contractile forces of alveolar epithelial cells. A549 alveolar epithelial cells were challenged with thrombin, and time course of contractile forces was measured by traction microscopy. The ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013